Образование

Апофема правильной треугольной пирамиды: формула и пример задачи

При изучении характеристик пространственных фигур в курсе стереометрии большое внимание уделяется таким свойствам, как площадь и объем. В то же время знать линейные параметры фигур важно, чтобы иметь возможность рассчитать указанные свойства. В данной статье ответим на вопрос, как найти апофему пирамиды правильной треугольной.

Какая фигура будет рассмотрена?

Треугольная пирамида с правильным основанием представляет собой фигуру в пространстве, которая ограничена одним равносторонним треугольником (основание) и тремя равнобедренными треугольниками (боковые стороны). Чтобы иметь возможность более четко представить эту пирамиду, покажем ее на рисунке.

Апофема правильной треугольной пирамиды: формула и пример задачи - новости образования и науки на News4Smart.ru

Важной точкой любой пирамиды является ее вершина, которая не принадлежит основанию. Если опустить перпендикуляр из нее на основание, то его длина будет высотой фигуры. В дальнейшем будем обозначать высоту буквой h. Высота правильной пирамиды падает точно в геометрический центр треугольника (точка пересечения его медиан, а также биссектрис и высот). Вторым линейным параметром, который следует знать, является длина стороны основания треугольной пирамиды, то есть длина стороны равностороннего треугольника. Обозначим ее буквой a.

Треугольная пирамида имеет собственное название — тетраэдр. Тетраэдр не является чисто теоретической геометрической фигурой. Она также встречается в некоторых природных структурах. Так, в алмазе атом углерода соединен с четырьмя такими же атомами, которые образуют тетраэдр. Другой пример — это молекула метана, в которой углерод, соединенный с четырьмя атомами водорода, образует правильную треугольную пирамиду.

Апофема правильной треугольной пирамиды: формула и пример задачи - новости образования и науки на News4Smart.ru

Формула апофемы пирамиды правильной треугольной

Перейдем непосредственно к вопросу статьи. Для треугольной пирамиды правильной апофемой называется любая из высот боковых треугольников, опущенная из вершины фигуры. Обозначим ее hb. Поскольку рассматриваемая фигура состоит из трех боковых треугольников, которые равны друг другу, то она имеет три одинаковых апофемы hb.

Определение длины апофемы не составляет большого труда. Предположим, что высота h и длина стороны a известны. Проводим высоту фигуры и рассматриваем треугольник прямоугольный, который находится внутри пирамиды и образован следующими сторонами:

  • апофемой hb (гипотенуза);
  • высотой h (один катет);
  • 1/3 медианы m равностороннего треугольника (второй катет).

Длина медианы m треугольника в основании равна:

m = √3/2*a

Пользуясь теоремой Пифагора, получаем формулу для длины апофемы hb:

hb = √((1/3*m)2 + h2) =>

hb = √(a2/12 + h2)

Эта формула показывает, что длина апофемы hb для любых параметров треугольной пирамиды всегда больше ее высоты h.

Решение задачи на определение значения hb

Апофема правильной треугольной пирамиды: формула и пример задачи - новости образования и науки на News4Smart.ru

Решим интересную задачу. Рассчитаем длину апофемы для тетраэдра, у которого все ребра равны друг другу.

Обозначим длину ребра буквой a. Она же является стороной треугольника в основании. Чтобы определить hb, необходимо найти h. Сделать это не сложно, если рассмотреть прямоугольный треугольник, образованный высотой h, ребром a и двумя третями медианы m. Получаем:

h = √(a2 — 4/9*m2) = √(a2 — 4/9*3/4*a2) = a*√(2/3)

Теперь применяем формулу для апофемы, получаем:

hb = √(a2/12 + h2) = √(a2/12 + 2/3*a2) = √3/2*a

Мы получили очевидный результат. Апофема правильной пирамиды треугольной равна длине медианы любого из равносторонних треугольников.

Апофема правильной треугольной пирамиды: формула и пример задачи — все интересные факты и достижения науки и образования на News4Smart.ru

Поделитесь ссылкой и ваши друзья узнают, что вы знаете ответы на все вопросы. Спасибо ツ

Related Articles

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Close