Образование

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи

Каждый школьник слышал о круглом конусе и представляет, как выглядит эта объемная фигура. В данной статье дается определение развертки конуса, приводятся формулы, описывающие ее характеристики, а также описывается способ ее построения с помощью циркуля, транспортира и линейки.

Круглый конус в геометрии

Приведем геометрическое определение этой фигуры. Круглым конусом называется поверхность, которая образована прямыми отрезками, соединяющими все точки некоторой окружности с одной-единственной точкой пространства. Эта единственная точка не должна принадлежать плоскости, в которой лежит окружность. Если вместо окружности взять круг, то указанный способ также приводит к получению конуса.

Круг называется основанием фигуры, его окружность — это директриса. Отрезки, соединяющие точку с директрисой, называются генератрисами или образующими, а точка, где они пересекаются — это вершина конуса.

Круглый конус может быть прямым и наклонным. Обе фигуры показаны ниже на рисунке.

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи - новости образования и науки на News4Smart.ru

Разница между ними заключается в следующем: если перпендикуляр из вершины конуса падает точно в центр окружности, то конус будет прямым. Для него перпендикуляр, который называется высотой фигуры, является частью его оси. В случае конуса наклонного высота и ось образуют некоторый острый угол.

Ввиду простоты и симметричности фигуры далее будем рассматривать свойства только прямого конуса с круглым основанием.

Получение фигуры с помощью вращения

Перед тем как перейти к рассмотрению развертки поверхности конуса, полезно узнать, как с помощью вращения можно получить эту пространственную фигуру.

Предположим, что у нас имеется прямоугольный треугольник со сторонами a, b, c. Первые две из них являются катетами, c — это гипотенуза. Поставим треугольник на катет a и начнем его вращать вокруг катета b. Гипотенуза c при этом опишет коническую поверхность. Эта простая методика получения конуса изображена ниже на схеме.

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи - новости образования и науки на News4Smart.ru

Очевидно, что катет a будет радиусом основания фигуры, катет b — его высотой, а гипотенуза c соответствует образующей круглого прямого конуса.

Вид развертки конуса

Как можно догадаться, конус образован двумя типами поверхностей. Одна из них — это плоский круг основания. Предположим, что он имеет радиус r. Вторая поверхность является боковой и называется конической. Пусть ее образующая будет равна g.

Если у нас имеется бумажный конус, то можно взять ножницы и отрезать от него основание. Затем, коническую поверхность следует разрезать вдоль любой образующей и развернуть ее на плоскости. Таким способом мы получили развертку боковой поверхности конуса. Две поверхности вместе с исходным конусом показаны на схеме ниже.

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи - новости образования и науки на News4Smart.ru

Внизу справа изображен круг основания. По центру показана развернутая коническая поверхность. Оказывается, что она соответствует некоторому круговому сектору круга, радиус которого равен длине образующей g.

Угол и площадь развертки

Теперь получим формулы, которые по известным параметрам g и r позволяют рассчитать площадь и угол развертки конуса.

Очевидно, что дуга кругового сектора, показанного выше на рисунке, имеет длину, равную длине окружности основания, то есть:

l = 2*pi*r.

Если бы весь круг радиусом g был построен, то его бы длина составила:

L = 2*pi*g.

Поскольку длина L соответствует 2*pi радианам, тогда угол, на который опирается дуга l, можно определить из соответствующей пропорции:

L ==> 2*pi;

l ==> φ.

Тогда неизвестный угол φ будет равен:

φ = 2*pi*l/L.

Подставляя выражения для длин l и L, приходим к формуле для угла развертки боковой поверхности конуса:

φ = 2*pi*r/g.

Угол φ здесь выражен в радианах.

Для определения площади Sb кругового сектора воспользуемся найденным значением φ. Составляем еще одну пропорцию, только уже для площадей. Имеем:

2*pi ==> pi*g2;

φ ==> Sb.

Откуда следует выразить Sb, а затем, подставить значение угла φ. Получаем:

Sb = φ*g2*pi/(2*pi) = 2*pi*r/g*g2/2 = pi*r*g.

Для площади конической поверхности мы получили достаточно компактную формулу. Величина Sb равна произведению трех множителей: числа пи, радиуса фигуры и ее образующей.

Тогда площадь всей поверхности фигуры будет равна сумме Sb и So (площадь круглого основания). Получаем формулу:

S = Sb + So = pi*r*(g + r).

Построение развертки конуса на бумаге

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи - новости образования и науки на News4Smart.ru

Для выполнения этой задачи понадобится лист бумаги, карандаш, транспортир, линейка и циркуль.

В первую очередь начертим прямоугольный треугольник со сторонами 3 см, 4 см и 5 см. Его вращение вокруг катета в 3 см даст искомый конус. У фигуры r = 3 см, h = 4 см, g = 5 см.

Построение развертки начнем с рисования циркулем окружности радиусом r. Ее длина будет равна 6*pi см. Теперь рядом с ней нарисуем еще одну окружность, но уже радиусом g. Ее длина будет соответствовать 10*pi см. Теперь нам нужно от большой окружности отрезать круговой сектор. Его угол φ равен:

φ = 2*pi*r/g = 2*pi*3/5 = 216o.

Теперь откладываем транспортиром этот угол на окружности с радиусом g и проводим два радиуса, которые будут ограничивать круговой сектор.

Таким образом, мы построили развертку конуса с указанными параметрами радиуса, высоты и образующей.

Пример решения геометрической задачи

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи - новости образования и науки на News4Smart.ru

Дан круглый прямой конус. Известно, что угол его боковой развертки равен 120o. Необходимо найти радиус и образующую этой фигуры, если известно, что высота h конуса равна 10 см.

Задача не является сложной, если вспомнить, что круглый конус — это фигура вращения прямоугольного треугольника. Из этого треугольника следует однозначная связь между высотой, радиусом и образующей. Запишем соответствующую формулу:

g2 = h2 + r2.

Вторым выражением, которое следует использовать при решении, является формула для угла φ:

φ = 2*pi*r/g.

Таким образом, мы имеем два уравнения, связывающих две неизвестные величины (r и g).

Выражаем из второй формулы g и подставляем результат в первую, получаем:

g = 2*pi*r/φ;

h2 + r2 = 4*pi2*r22 =>

r = h /√(4*pi22 — 1).

Угол φ = 120o в радианах равен 2*pi/3. Подставляем это значение, получаем конечные формулы для r и g:

r = h /√8;

g =3*h /√8.

Остается подставить значение высоты и получить ответ на вопрос задачи: r ≈ 3,54 см, g ≈ 10,61 см.

Что такое развертка конуса и как ее построить? Формулы и пример решения задачи — все интересные факты и достижения науки и образования на News4Smart.ru

Поделитесь ссылкой и ваши друзья узнают, что вы знаете ответы на все вопросы. Спасибо ツ

Related Articles

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Close